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An experimental study of transition from steady laminar to chaotic flow in a horizon-
tal annulus between concentric cylinders is conducted for 0.90×105 6 RaL 6 3.37×105.
Qualitative information on the averaged thermal field is obtained by an interferomet-
ric method, whereas the kinematics are visualized by using smoke lines. The transition
from steady to unsteady mono- and multi-periodic regimes is accurately studied by a
CTA and CCA combined hot-wire technique. Different data analyses are performed
in order to differentiate the forms of transition.

1. Introduction
The study of flow and heat transfer in natural convection in horizontal cylindrical

annuli has received some attention in the past years. This was due mainly to two
different aspects: the engineering applications such as gas-insulated electric transmis-
sion cables and theoretical interest since the chaotic transition phenomena are not
completely understood.

Gas-insulated electric cables consist of a spaced cylindrical conductor heated by the
Joule effect and a coaxial sheath with a gap of the order of magnitude of the inner
diameter. These gas-insulated cables are quite important in both underground power
transmission and high-voltage substations. In underground power transmission cables
electrical insulation is obtained using air and the order of magnitude of geometrical
dimensions and temperature gaps is such that the Rayleigh number is in the range
104 ∼ 105. In high-voltage substations, the use of SF6 as an insulator is becoming
very attractive due to the possibility of reducing the space and cost requirements
because of the excellent dielectric strength and high arc-extinguishing characteristics.
For these applications the Rayleigh number (RaL) is in the range 105 ∼ 106.

The phenomenon of transition to chaos in a horizontal cylindrical annulus is
also very attractive from a theoretical point of view as it presents a very good
repeatability in the different stages of transition. This behaviour is due to the strong
and well defined basic flow in the steady-state condition. As a matter of fact the
structures of this flow depend neither on the initial conditions nor on the transient of
the system, in contrast with Rayleigh–Bénard systems (Bergé, Pomeau & Vidal 1984).

† Author to whom correspondence should be addressed.
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This well defined behaviour permits a close study of chaotic transition phenomena,
with the goal of experimentally validating the scenarios of transition to chaos.

Many experimental investigations as well as numerical simulations have been
conducted for studying natural convection in horizontal cylindrical annuli in steady
conditions. In particular Kuehn & Goldstein (1976) presented an experimental and
theoretical study of this problem together with a complete review of the relevant,
now dated, literature; Kuehn & Goldstein (1978) experimentally studied the case
of vertical eccentric cylinders. Chakrabarti, Probert & Shilton (1983) analysed by
an interferometric technique the system with a cold inner cylinder. Guj, Iannetta &
Moretti (1992) used the same technique for evaluating the thermal field and heat
transfer in a horizontal eccentric cylindrical annulus. Also, the numerical studies
are restricted to the case of steady flow conditions in concentric and eccentric annuli
(Kuehn & Goldstein 1976; Cho, Chang & Park 1982; Wang & Bau 1988; Guj & Stella
1995). The study of unsteady conditions has received less attention due to difficulties
connected with the possible mechanisms that can appear in the transition from steady
to turbulent conditions by changing the independent dimensionless parameters, which
are: Rayleigh number (Ra) (or Grashof number, Gr), Prandtl number (Pr) and
dimensionless gap `. As clearly described in the paper of Bishop, Carley & Powe
(1968) and Prusa & Yao (1983) two different oscillatory flow patterns can appear: the
first is basically a two-dimensional tangential instability in the form of two eddies,
while the second is of the three-dimensional type. Furthermore multicellular situations
in the upper part of the annulus can appear for very low ` (Prusa & Yao 1983) and
cross roll configurations can be present due to the end wall. Bishop et al. (1968) also
gave the correlation equations in terms of oscillating flow parameters (amplitude,
period and wavelength) for a wide range of Gr and `. They presented an exponential
reduction of periodicity for increasing Gr with an exponent of 0.44 and this behaviour
is qualitatively confirmed by the experimental work of Miki et al. (1988) and by the
numerical simulation of Ohya et al. (1988). So, to our knowledge, no quantitative
systematic studies are available in the literature which focus their attention on the
mechanism of transition from steady state to chaotic behaviour in its initial stage.

Thus, in the present paper, the transition from steady to unsteady chaotic flow
conditions in a horizontal annulus between concentric cylinders is experimentally
studied because this dynamical behaviour may happen in the Ra range of real electrical
applications. The combination of a dual sensor probe technique of the hot/cold
type for very accurate simultaneous local velocity and temperature measurements
(Guj, Labonia & Stella 1997), an interferometric method for averaged thermal field
evaluation (Guj et al. 1992) and a kinematical flow visualization permit the mechanism
of transition to chaos to be determined in a systematic way for the given geometry of
the annulus. The RaL is varied in the range 0.90×105 and 3.37×105 which correspond
to steady state and chaotic conditions, respectively.

A wide data analysis is performed on very long time histories (order of 4 h) and a
large number of samples (order of 6×105). Different indicators such as power spectral
density (PSD), phase trajectories (PT), Poincaré section (PS), fractal dimension (FD),
Lyapunov exponents (LE) and probability density functions (PDF) are adopted to
define uniquely the dynamical behaviour of the system while kinematical and thermal
visualization have given qualitative information on flow structures and oscillatory
modes.

According to Bishop et al. (1968) and Miki et al. (1988) these indicators all seem
to confirm that the first transition from steady to unsteady behaviour happens in a
three-dimensional manner at RaL ' 1.82×105 with a monoperiodic mode at very low
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Figure 1. Sketch of the experimental setup (interferometer and flow visualization).

frequency. For RaL = 2.13 × 105 a second incommensurable frequency appears and
it seems to take energy from the lower frequency, which tends to disappear. In the
final stage of the transition to chaos two new modes appear with incommensurable
frequencies. We argue that the mechanism of the transition to chaos follows the
Curry–Yorke scenario (Bergé et al. 1984), the energy of the intermediate frequency
mode being two orders of magnitude less than that of the other two. The PSDs do
not show any inertial range and the power laws that can be found for some RaL
present scaling exponents which seem to refer to a dissipative range.

2. Experimental setup
The test section, the optical elements, which are used for interferometry and flow

visualizations, and the dual sensor probes are mounted on a holographic table to
reduce the high-frequency vibration noise from the floor of the laboratory (figure 1).

2.1. Test section

The test section, which consists of a very long annulus (length b = 362 mm) filled
with air at atmospheric pressure (a sketch of the geometry is shown in figure 2), was
designed to present a large aspect ratio and to satisfy the interferometer accuracy
requirements, that is the number of fringes, when using a two-beam interferometer
within the considered temperature range.

The assembled apparatus is composed of two copper cylinders. The inner cylinder
(diameter di = 39.8 mm) is heated by passing an alternating current through a
resistor (50 Ω) and supported by two insulated bakelite supports. The outer cylinder
(diameter do = 94 mm) has been built of two different sections separated by a
10 mm long copper ring, which contains the holes for inserting the probes. Water
at isothermal conditions passes through two counter-rotating channels of a double
helix. The isothermal conditions on the cylinder surfaces are checked by a system
of fourteen Cr-Al thermocouples, which are positioned within 1 mm of the outer
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Figure 2. Sketch of the geometry of the test section and probe position.

surface of the cylinders. Six thermocouples have been positioned in the inner cylinder,
whereas eight thermocouples have been positioned in the external one.

2.2. Interferometer optical configuration

According to the general theory of two-beam interferometry (Merzkirch 1974), we
chose the interferometer setup to have a parallel beam of light passing through the
test field. The interferometer used (sketched in figure 1), based on the interferometrical
methodology proposed by Carlomagno (1986), is described in detail in (Guj et al.
1992) and combines the advantages of RBI (reference beam interferometry) of Mach–
Zehnder type with the setup simplicity of SI (shearing interferometry).

2.3. Hot-wire anemometer techniques

Simultaneous measurements of velocity and temperature by a dual sensor probe in
unsteady natural convection flows with large temperature gaps (order of 50 ◦C or
more) are particularly complex due to two main reasons; namely (i) the nonlinear
relationship between output voltage from the sensors and temperature, (ii) contami-
nation of the CCA voltage by the velocity. Therefore a special hot/cold dual sensor
probe technique of wire type has been studied and installed for performing such mea-
surements. Details of the calibration and measurement procedure and the numerical
technique to process the signals are reported in Guj et al. (1997). Therefore only a
summary is given here.

Instrumentation. The velocity and temperature measurements have been performed
using a dual sensor probe DISA 55P71 with two parallel sensors of 5µm diameter
about 1 mm long and an AN 1003 Lab-System hot-wire system. One sensor was
connected to a constant temperature module (CTA), while the other was connected
to a constant current module (CCA).

Directional sensitivity. In an experimental study Guj et al. (1997) have verified that,
in agreement with the theory, the directional sensitivity of the hot wire vanishes for
‖v‖ → 0 (Brunn 1995). Then, in the present range of velocity (‖v‖max ' 0.15m s−1),
the hot wire is sensitive directly to the velocity modulus (v = ‖v‖), all sensitivity
coefficients being equal to about 1.
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Calibration procedure. A specially designed low-velocity calibrator has been designed
and used for vertical velocity up to 0.2m s−1. This calibrator accounts for the effect
of natural convection self-induced by the hot wire and allows the temperature of the
air flow to be changed in a wide range. The two calibration surfaces

eCCA = eCCA(v, T ), eCTA = eCTA(v, T ) (1)

are obtained by performing velocity calibration curves at several (seven in the present
case) constant temperatures. The temperature is measured by a system of Cr-Al
thermocouples.

Data acquisition. A constant offset has been given to both CCA and CTA signals
to reduce the mean value, then both are amplified by the respective modules from 6
to 35 times. The amplified signals are then filtered with a cut off frequency of 25 Hz
by means of an analogic filter Keemo VBF8 (roll off of 48 dB/octave) and amplified
from 10 to 100 times in order to reach the full scale of the A/D converter (12 bit) and
to obtain the maximum resolution. The acquisition is performed by DATS Acquire
System (Prosig Consultant Ltd) on a PC 486 with a sampling rate of 1024 Hz.

Measurement procedure and data processing. In each experiment the apparatus is left
at constant conditions for at least 3 hours to reach a steady state or fully developed
condition. This condition is then checked for the following ten minutes by local
velocity measurements or by visual analysis of the interferometric fringes. Then, ten
decorrelated acquisitions of 1.050 Ksamples per channel are performed in about 4
hours, with a sampling rate of 1024 Hz. The offset is added to the deamplified digital
signal and a digital low pass filter is applied before resampling the signal to 64 Hz.
The simultaneously measured velocity and temperature are calculated by solving the
nonlinear system of equations (1) using Newton’s method. So, for each acquisition,
the time histories for the quantities v and T are obtained for 1024 s (65536 samples).

System accuracy. The accuracy in the evaluation of velocity and temperature at the
measurement point has been evaluated by reprocessing a large number of calibration
points by means of the procedure described above. The uncertainty in velocity is
0.6 × 10−3 m s−1, that in temperature is 0.2 × 10−1 ◦C for 0.02 < v < 0.2 m s−1 and
10 < T < 80 ◦C (Guj et al. 1997).

The effect of background noise has been evaluated by performing a measurement
at two conditions: at rest (∆T = 0 ◦C) and steady (∆T = 39 ◦C). The PSD shows the
expected isoenergetic power law with a slope of −1. It is worth noting that, due to the
large amplification used (from 60 to 3500) the accuracy in the fluctuating component
of velocity and temperature signals is orders of magnitude greater than that achieved
for the mean components.

3. Physical model
A dimensional analysis of the problem is performed using the following variables:

gap between the cylinders L, diameter of the inner cylinder di, temperature difference
between the cylinders ∆T , thermal expansion coefficient β (= 1/T , T in K), modulus
of gravitational acceleration g, thermal diffusivity α, kinematic viscosity ν and the
cylinder longitudinal length b. This analysis leads to the following five independent
dimensionless groups:

RaL =
g β L3 ∆T

να
, P r =

ν

α
, NE = β ∆T , ` =

L

di
, λ =

b

di
,
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Figure 3. The Rayleigh number as a function of ∆T , to use as reference temperature
for the fluid properties calculation: (a) Ti, (b) Tm, (c) To.

where RaL is the Rayleigh number, Pr is the Prandtl number, NE is the expansion
number, ` is the non-dimensional gap and λ is the aspect ratio. The effect of the
expansion number is normally not considered to be significant, and it is usually
neglected. In particular Bishop et al. (1968) demonstrated that the effects of NE do
not affect the value of the critical Grashof number (Grcrit) and the frequency of
the oscillating flow (f̃) which are the quantities under investigation in this paper.
Therefore NE is not included in our analysis.

The effect of variations of β, ν and α with time is not included in the dynamical
analysis, due to the negligible value of both their sensitivity with respect to temperature
and the small temperature fluctuation with time (table 1, § 5) during the dynamical
behaviour.

Owing to the large variation of temperature in the annulus, the properties of the
fluid (ν, α, β) are not considered constant in space at the different RaL conditions
and the temperature for the fluid properties calculation is important in the evaluation
of RaL. The three curves reported in figure 3 show RaL as a function of ∆T by
using as a reference temperature (a) Ti, (b) Tm = (Ti + To)/2, (c) To where Ti (To)
is the temperature of the inner (outer) cylinder; it is evident that the three curves
superimpose for ∆T < 10 ◦C, while for large ∆T the curve (b) is not a function of
∆T whereas the curve (a) decreases when ∆T increases. For this reason To has been
chosen as a reference temperature instead of Tm usually used by other authors in
smaller ∆T applications.

As reported by Bishop et al. (1968), edge effects might cause the numerical values
of wavelength, f̃, Grcrit and amplitude to vary somewhat as λ is reduced much below
9. Thus, since λ = 13.4, it is most unlikely that the oscillating flow condition detected
is affected by the edge effects.

In our experiment ` = 0.68, and Pr is nearly constant (' 0.71) in the range of
temperature considered.

It follows that RaL with the fluid properties defined with To can be considered the
only independent control parameter for the dynamical system.
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4. Dynamical characterization techniques

Many indicators are adopted to analyze and categorize the different dynamical
behaviours of the system. In particular the following techniques have been used:
power spectral density (PSD), phase trajectories (PT), Poincaré sections (PS), fractal
dimension (FD), Lyapunov exponents (LE) and probability density functions (PDF).

4.1. Power spectral density

A standard PSD analysis has been performed on both velocity and temperature time
series. A frequency resolution of ∆f = 0.97656×10−3 Hz has been adopted in order to
resolve the smallest physical frequency, and the PSD is evaluated from the ensemble
averages of 10 decorrelated acquisitions.

4.2. Phase trajectories and Poincaré sections

The phase space is the mathematical space Rn in which each orthogonal coordinate
represents a degree of freedom of the dynamical system. Usually the number of
degrees of freedom is not known a priori and it is necessary to reconstruct both the
phase space and the topology of the attractor by using a time delay technique (Takens
1981; Bergé et al. 1984) from the values of the variable x(t) at the instant t and at
n− 1 other decorrelated instants. Then a phase pseudo-space is defined as

X (t) = {x(t), x(t+ τ), . . . , x(t+ (n− 1)τ)}.

According to Bergé et al. (1984), the time delay (τ) is given by the first zero of
the autocorrelation function. Different choices for τ have been tested for validation
purposes in the range 0.8 τ ∼ 3 τ. The results are similar to the ones calculated with
the criteria defined above.

In the following, we will call the trajectories in the phase pseudo-space PT.
Analogously the PS consists of sectioning the trajectories and looking at these
sections through a plane in a phase pseudo-space. In an R3 phase pseudo-space
({x(t), x(t + τ), x(t + 2 τ)}) we have adopted as PS the intersections between the
trajectories and the plane x(t) = x(t+ τ) looking at these sections along the (0, 1, 0)
axis which gives the curves {[x(t), x(t+ 2τ)] at x(t) = x(t+ τ)}.

4.3. Correlation ( fractal) dimension

There are many ways to define the dimension, d(A), of a set A. The correlation
dimension dc (Grassberger & Procaccia 1983) has been adopted in the present work
to estimate d(A) due to the fact that for experimental data or high-dimensional
dynamical systems dc is very efficient to compute (Baker & Gollub 1990). The
correlation dimension may be computed from the integral correlation function C(r)
equal to

C(r) = lim
N→∞

1

N

N∑
i=1

Ci(r), (2)

N being the number of samples and

Ci(r) =
1

N − 1
× [number of pairs i, j whose distance ‖xi − xj‖ < r].
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In our case we are working with two variables (v, T ), and so we must define a distance
d(t) in the space (v, T ) by non-dimensionalization of v and T as

d(t) = ‖xi − xj‖ =

[(vi − vmed
∆v

− vj − vmed
∆v

)2

+

(
Ti − Tmed

∆T
− Tj − Tmed

∆T

)2
]

(3)

with ∆v = vmax − vmin and ∆T = Tmax − Tmin. Such a distance can be extended to the
(v, T )n space by using a time delay technique.

From the physical point of view, C(r) is proportional to the average number of
points that are inside the hypersphere with radius r centred on the generic point. For
an attractor the fractal structure becomes a power law

C(r) ∼ rdc for r → 0. (4)

The validity of this power law is limited to values of r reasonably small compared
to the expansion of the attractor in the pseudo-space; as r increases, C(r) saturates
as r attains values comparable to the attractor size. On the other hand, the statistics
fluctuations become negligible when C(r) × N2 is of the order of 100 (Atten &
Malraison 1988).

4.4. Lyapunov exponents

For a nonlinear application xn+1 = f(xn), the Jacobian matrix (Ji j)xn is equal to the
matrix with the partial derivatives ((∂fi/∂xj)xn) as elements. The Lyapunov exponents
are a sort of mean of the eigenvalues of Jxn . By introducing the matrix T n =
Jxn Jxn−1

· · · Jxo it is possible to show (Oseledec 1968) that, under ergodic requirements,
the limit matrix

Λx = lim
n→∞
‖T n‖1/n (5)

exists and does not depend to xn. The Lyapunov exponents are defined as the
logarithm of the eigenvalues of Λx.

We have evaluated the exponent with the largest real part using the method
proposed by Benettin, Galgani & Strelcyn (1976). So we follow the evolution in time
of a point xi of the trajectory and a nearby point xj belonging to a different portion
of the trajectory. If d(t) is the distance between xi and xj at the instant t the Lyapunov
exponent is given by

λ = lim
t→∞

log

[
d(t)

d(to)

]
. (6)

The distance d(t) is computed by equation (3).

4.5. Probability density functions

A standard PDF has been calculated for both the velocity and temperature time
series. A ∆v (∆T ) resolution equal to two times the v (T ) accuracy has been adopted
in order to reduce the statistical fluctuations, and the PDF is evaluated using 655 K
samples.

5. Results and discussion
The temperature gap has been increased from 39 ◦C to 146 ◦C, that is RaL is

varied from 0.90× 105 to 3.37× 105 for the considered radius ratio (do/di = 2.36). In
this range of RaL several dynamical behaviours appear from steady state to chaotic
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∆T
(◦C) RaL × 10−5 σv × 102 (m s−1) σT × 10 (◦C) Au AT Dynamical state

39 0.90 0.043 0.070 1 1 Steady state
72 1.66 0.056 0.141 1.3 2.0 Steady state
79 1.82 1.353 5.147 26.4 36.3 Periodic regime
92 2.13 0.438 2.877 8.6 17.4 Quasi-periodic regime
102 2.36 0.600 4.877 11.1 26.6 Periodic regime
123 2.84 0.343 3.000 4.1 13.6 Quasi-periodic regime
146 3.37 0.723 10.956 5.6 41.8 Chaotic regime

Table 1. Statistics of the critical flow conditions.

Figure 4. Interferometric thermal field for RaL = 0.90× 105. Note the position of the
probe with respect to the plume.

conditions. According to Kuehn & Goldstein (1976) a steady structure is found for
RaL < 1.82× 105. For this value of RaL the flow becomes oscillatory with only one,
very low, frequency. The final transition mechanism to the chaotic condition is that
of the Curry–Yorke model (Bergé et al. 1984): the chaos appears directly from a
quasi-periodic regime with two frequencies, while in the intermediate range of RaL a
transition of energy from low to high frequency has been detected. A large number
of intermediate RaL values have been tested. All the conducted experiments are in
agreement with the scenario presented in this paper.

A summary of the critical flow conditions which correspond to the transitional
dynamical state of the system is reported in table 1 together with some statistical
quantities. The turbulence level (σv) and temperature standard deviation (σT ) give a
global indication of the dynamical condition of the system, while Av = (σv/v) (v39/σ39

v )
and AT = (σT/∆T ) (39/σ39

T ) give a relative measure of the ratio between mean and
fluctuating quantities with respect to steady-state conditions.

5.1. Steady state

At RaL up to 1.66 × 105 (∆T = 72 ◦C) the integral indicators (table 1) confirm that
the flow is steady having Av = 1.3 and AT = 2.0, of the order of one. The thermal
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Figure 5. Kinematical flow visualization for RaL = 0.90× 105 (∆T = 39 ◦C)
of the endwall effect (perspective view).
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Figure 6. Power spectral density for RaL = 0.90× 105. Velocity.

field (RaL = 0.90× 105) obtained by the interferometric technique is shown in figure
4. The effect of the two recirculating cells is clearly shown as reported in Guj et al.
(1992). Flow visualization along the axis of the annulus shows only the endwall effect
(figure 5).

The slope of the PSD for these cases is equal to that of RaL = 0 (figure 6), due to
the background noise. The linear fit for RaL = 0.90×105 (∆T = 39 ◦C) is shown in all
the PSDs at different RaL presented in the following, to give quantitative information
on the signal to noise ratio in the Fourier space.
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5.2. First periodic regime

A periodic regime is found for RaL = 1.82 × 105 (∆T = 79 ◦C). The time history of
the acquired velocity (figure 7) shows a periodic trend with nonlinear effects. This
nonlinearity gives a large number of resolved harmonics (' 20) in the PSD (figure
8). The fundamental frequency is f = 0.0166 Hz and a linear best fit of the decay
law of the peaks of the harmonics gives a slope of −4.7. As shown by Bishop et al.
(1968), the unsteadiness is due to a plume oscillating longitudinally out of phase. The
oscillation of the plume has been detected in all the visualizations performed (see
e.g. § 5.4). Thus, the instability seems to be of a three-dimensional type, according to
Bishop et al. (1968), Kuehn & Goldstein (1976) and Miki et al. (1988).
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downward. The slope of the power law gives an estimation of the fractal dimension FD =
1.12± 0.15.

The PT (figure 9) shows a curve homeomorph to a circle of order 3 with three
zones where the density of the points seems greater than the average one which is a
cloud of points whose distance is correlated to experimental uncertainty.

The FD is, as described in § 4.3, the slope of the scaling law of C(r) in the linear
range not affected by noise (figure 10). All the degrees of freedom considered give an
FD of 1.12± 0.15. The value is larger than one due to the effect of the large number
of harmonics and of noise.

The LE is equal to 0.011± 0.012, that is zero within the experimental uncertainty.
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Figure 11. Kinematical flow visualization for RaL = 2.15× 105 (∆T = 94 ◦C)
along the axis of the annulus (perspective view).
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Figure 12. The velocity time history for RaL = 2.13× 105.

All the considered indicators confirm a monoperiodic behaviour with significant
nonlinearity.

5.3. First quasi-periodic regime

A quasi-periodic regime is found at RaL = 2.13×105 (∆T = 92 ◦C). Flow visualization
in the upper region (figure 11) along the axis of the annulus shows a large number of
unsteady cross-rolls. The time history of velocity (figure 12) shows regular behaviour
with a plateau where the high-frequency oscillations dominate; these plateaus are
separated by peaks of stronger intensity at low frequency. Note that the behaviour
shown in figure 12 is very similar to that exhibited in figures 13(c) and 14(a) in Rubio
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Figure 14. Blow up of the power spectral density for RaL = 2.13× 105. Velocity.

et al. (1989). This condition corresponds to the maximum negative skewness found,
in both temperature and velocity, in the experiments considered. The PSD (figure 13)
confirms the presence of two incommensurable frequencies, with a frequency ratio of
128.8± 0.1. The low frequency (f1 = 0.0049 Hz), the most energetic, is about 1/3 of
that at RaL = 1.82× 105. About six harmonics can be detected. In the high-frequency
range of the spectrum the highest frequency (f2 = 0.628922 Hz) is detected with
two harmonics. By blowing up figure 13 (figure 14) a number of linear combinations
f2 ± nf1 between the fundamental frequencies are clearly differentiated (Bergé et al.
1984).

The PT (figure 15) has the form of a torus with three zones where the density of
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Figure 15. Phase trajectories for RaL = 2.13× 105. Temperature.

t1 t2 t3

Figure 16. Kinematic flow visualization for RaL = 2.45× 105 (∆T = 106 ◦C) in the
upper portion of the transversal mid-plane of the annulus.

points seems greater than the average. The FD is equal to 1.89 ± 0.12 and LE to
0.012± 0.012, which confirms the results of the PS.

5.4. Second periodic regime at high frequency

By increasing RaL to 2.36 × 105 (∆T = 102 ◦C) a new periodic regime with f =
0.665054 Hz is found. Flow visualization along the axis of the annulus shows quasi-
steady cross-rolls of the type of those in figure 11, whereas the transverse visualization
shows an oscillating plume (figure 16). The time signal (not presented) is a sinusoid,
as confirmed by the PSD (figure 17) where it is evident that the main peak is about 3
orders of magnitude greater than the second and other harmonics. What is interesting
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Figure 18. Phase trajectories for RaL = 2.36× 105. Temperature.

is that the main frequency is only 5.4% greater than f2 for RaL = 2.13× 105, but its
energy is two orders of magnitude greater, while the mode at the lower frequency f1

of figure 13 has largely reduced its energy and seems to disappear.
The fully periodic regime is confirmed also by all the other indicators: the PT

is a circle (figure 18), the PS is a point (not presented here), the PDF shows two
symmetric peaks (figure 19), the FD is equal to 1.06 ± 0.006 and the LE is equal
to 0.005 ± 0.009. With reference to the disappearance of the low frequency f1, we
can guess that the strong energy at a scale which is of the order of the Kolmogorov
scale renders the whole system more dissipative and probably stabilizes the large-scale
three-dimensional modes.
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10–2

0.01

f

E(v)

10–4

10–6

10–8

10–10

0.1 1

Figure 20. Power spectral density for RaL = 2.84× 105. Velocity.

This dynamical behaviour is self-maintaining up to RaL = 2.66×105 (∆T = 115 ◦C).

5.5. Second quasi-periodic regime

A new quasi-periodic regime is found for RaL = 2.84 × 105 (∆T = 123 ◦C). The
visualized cross-rolls are still present and unsteady for RaL equal to and larger than
RaL = 2.84×105. The PSD of the velocity shows (figure 20) that two incommensurable
frequencies with the same level of energy are present. The frequency ratio is 15.06±
0.01. The fact that the ratio between the two frequencies is irrational is evident from
the PT which shows a torus instead of a few points. A large number of harmonics
and nonlinear interactions between f1 = 0.048830 Hz and f2 = 0.735367 Hz =
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Figure 21. The velocity time history for RaL = 2.84× 105.
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(15.06 ± 0.01)f1 are clearly detectable on the spectrum. A third small-amplitude
frequency is present for f3 = 0.394543 Hz = (8.08 ± 0.01)f1 with some nonlinear
interactions. But, due to the low level of energy, this mode does not affect the quasi-
periodic behaviour. The time signal (figure 21) differs significantly from that of figure
12 due to the same level of energy associated to the two frequencies f1 and f2.

The PT (figure 22) has the clear form of a torus with a thickness of the same order
of magnitude as the diameter. Thus the corresponding PS is, as expected, an ellipse
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Figure 23. Poincaré section for RaL = 2.84× 105. Temperature.

(figure 23). The FD is equal to 2.11 ± 0.06 and LE 0.009 ± 0.010. Therefore all the
considered indicators confirm the bi-periodic regime.

At RaL = 3.07×105 (∆T = 133 ◦C) the behaviour is similar (FD= 2.08±0.06) to that
at RaL = 2.84×105, the only difference in the PSD being a slight spreading around the
low-frequency (f1 = 0.0458998 Hz) peak and a reduction in the number of harmonics
of f2 (f2 = 0.772476 Hz = (16.83 ± 0.01)f1). The energy of the third frequency at
f3 = 0.408216 Hz = (8.89 ± 0.01)f1 increases by about one order of magnitude;
but the effect is still negligible. Note that for RaL = 3.07× 105 the incommensurable
nature of the three frequencies is more evident than for RaL = 2.84× 105.

5.6. Chaotic regime

A small increase in RaL up to RaL = 3.37 × 105 (∆T = 146 ◦C) produces a large
change in the dynamics of the system, which shows a chaotic behaviour as confirmed
by FD = 5.38 ± 0.02 (figure 24) and LE = 0.30 ± 0.014. The time signal is shown
in figure 25 and the corresponding PSD, reported in figure 26, exhibit the three
frequencies already detected, f1 = 0.0449232 Hz, f2 = 0.788101 Hz = (17.5± 0.01)f1

and f3 = 0.417005 Hz = (9.08 ± 0.01)f1, few harmonics or nonlinear interactions
and a wide spreading at high frequencies. At low frequency, the spectrum presents a
turbulent trend with a low-frequency energy-containing range and a range presenting
a scaling law, which seems to be dissipative (exponent −6.56).

The chaotic regime is confirmed by the PT (figure 27) and the PS (not shown)
with the dispersion of the points in shape of a cloud. The PDF (figure 28) gives
an exponential trend which seems to show the presence of intermittent behaviour
(Heslot, Castaing & Libchaber 1987).

Finally, in order to compare the temperature variations for various RaL, in figure
29 all the PTs are reported on the same scale.



198 G. Labonia and G. Guj

100

1

r

C(r)

10–1

10–2

10–3

10–4

Figure 24. Correlation function for RaL = 3.37 × 105 as a function of the non-dimensional
distance r on a log–log scale. The dimension of the phase pseudo-space (n) is the parameter
increasing downward. The slope of the power law gives an estimation of the fractal dimension
FD = 5.38± 0.02.

100

t

v (t)

0.16

0.15

0 200 300 400 600

0.14

0.13

0.12

0.11

0.10

0.09

500

Figure 25. The velocity time history for RaL = 3.37× 105.

6. Conclusions
A study of natural convection in a cylindrical annulus has been conducted in a

range of RaL (0.9× 105 < RaL < 3.37× 105), which is characteristic of gas-insulated
electric transmission cables. Also the considered non-dimensional gap ` (` = 0.68) is a
standard value for many engineering applications such as long-distance transmission
cables and power substations.

By systematic experimental analysis it has been verified that the mechanism of
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Figure 27. Phase trajectories for RaL = 3.37× 105. Temperature.

transition from steady state to chaotic turbulent conditions is quite repeatable and
the following stages in the transition to chaos have been differentiated by different
dynamical indicators: 2D steady state; first periodic regime at low frequency with
an oscillating flow of 3D type; first quasi-periodic regime for the growth of a high-
frequency mode due to a large number of unsteady cross-rolls; second periodic
regime at high frequency with quasi-steady cross-rolls and transverse oscillation of
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Figure 29. Phase trajectories for: (a) RaL = 1.82× 105; (b) RaL = 2.13× 105; (c) RaL = 2.36× 105;
(d) RaL = 2.84× 105 and (e) RaL = 3.37× 105. Temperature.

the plume; second quasi-periodic regime and finally transition to chaos. The final stage
of transition to chaos follows a route which seems to fit the Curry–Yorke scenario
because the third incommensurable frequency presents an energy level negligible with
respect to the other two.

This well defined route to chaos is, on the other hand, not expected for
smaller gaps which can present multicellular solutions of Rayleigh–Bénard type in
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the upper part of the annulus. So in geometries with very small gaps different mech-
anisms of transition to chaos can be found depending on the initial conditions and
noise.

The repeatability and robustness of the mechanism of transition to chaos of the
considered annulus in connection to the increasing capability for heat exchange in
chaotic (turbulent) unsteady conditions with respect to steady laminar ones (larger
Nusselt number v/s RaL slope) seems to confirm that the adopted gap corresponds
to a stable system from the global thermal point of view.
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also like to thank Drs F. Stella, R. Camussi and P. Capoferro for their collaboration
in setting up the experiment and the measurement technique.
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